Numerical solution of weakly singular Volterra integro-differential equations with change of variables
نویسندگان
چکیده
We discuss a possibility to construct high order methods on uniform or mildly graded grids for the numerical solution of linear Volterra integro-differential equations with weakly singular or other nonsmooth kernels. Using an integral equation reformulation of the initial value problem, we apply to it a smoothing transformation so that the exact solution of the resulting equation does not contain any singularities in its derivatives up to a certain order. After that the regularized equation is solved by a piecewise polynomial collocation method on a mildly graded or uniform grid. In particular, a numerical method based on the Haar wavelets can be constructed. Key–Words: Weakly singular integro-differential equation, Smoothing, Collocation method, Haar wavelet
منابع مشابه
Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملTau Numerical Solution of Volterra Integro-Differential Equations With Arbitrary Polynomial Bases
متن کامل
Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کامل